Quantum Information Processing: Cryptography, Computation, and Teleportationn - Proceedings of the IEEE
نویسنده
چکیده
Present information technology is based on the laws of classical physics. However, advances in quantum physics have stimulated interest in its potential impact on such technology. This article is a reasonably introductory review of three aspects of quantum information processing, cryptography, computation, and feleportation. In order to give a level of self-containment, I serve up hors d' oeuvres on the relevant parts of quantum physics and the sorts of quantum systems which might form the building blocks for quantum processors. Quantum cryptography utilizes states of individual quantum systems for the transfer of conventional classical bits of information. The impossibility of measuring quantum systems without disturbing them guarantees the detection of eavesdropping and hence secure information transfer is possible. In a sense, tdeportation is the inverse of cryptography, using more robust classical bits to faithfully transfer a quantum state through a noisy environment. Quantum computation utilizes the evolving quantum state of a complex system. which consists of many interacting individuals. If such a machine could be built, it would be capable of solving some problems which are intractable on any conventional computer; I illustrate this with Shor's quantum factoring algorithm. I give some details of the current experimental achievements, proposals, and prospects for the future and of the patents granted to date.
منابع مشابه
An Introduction to Differential Computation Analysis (DCA) on the withe-box cryptography algorithms
Advances in information and communication technologies lead to use of some new devices such as smart phones. The new devices provide more advantages for the adversaries hence with respect to them, one can define with-box cryptography. In this new model of cryptography, designers try to hide the key using as a kind of implementation. The Differential Computation Analysis (DCA) is a side channel ...
متن کاملQuantum cryptography ieee paper pdf
IEEE Xplore for exclusive pricing! This research paper concentrates on the theory of quantum cryptography, and.This research paper concentrates on quantum cryptography, and how this. Technologies for Homeland Security HST, 2011 IEEE International Conference on.the use of quantum cryptography in fiber optical networks gets significant. In this paper, we analyze the interests of using. 2006 IEEE ...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملSynthesis of reversible logic circuits
Reversible or information-lossless circuits have applications in digital signal processing, communication, computer graphics, and cryptography. They are also a fundamental requirement in the emerging field of quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input–output line-pairs (temporary storage channels)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996